If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+3x=52
We move all terms to the left:
9x^2+3x-(52)=0
a = 9; b = 3; c = -52;
Δ = b2-4ac
Δ = 32-4·9·(-52)
Δ = 1881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1881}=\sqrt{9*209}=\sqrt{9}*\sqrt{209}=3\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{209}}{2*9}=\frac{-3-3\sqrt{209}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{209}}{2*9}=\frac{-3+3\sqrt{209}}{18} $
| 8n-3(n-4)=14+3n | | 3-2(x+3)=4-3x | | 20x+2(1-x)=128 | | 20x2(1-x)=128 | | 4y-8+y+44=8y+40-5y | | .333s+14=26 | | 3x+2-4x=7-5x | | 3/4(2x+9)=9 | | 2z=6z= | | (X+36)=(4x+9) | | 4(x+1)-2=9x | | q2+8q=0 | | m2-125=0 | | 5-x/5=25 | | 0=-3/7(1)+x | | .5x-(x+3)=x-5 | | 4z/9+4=2 | | 9u+20=13u | | 7^-x=1/49 | | x-3/2+22=92 | | x^2+11x=10=0 | | 46x=422 | | -y-2.5=-4 | | 4(2y+4)-7y=18 | | 2(-3x+1)-2x=-7(x+1) | | 56x=1,120 | | 6x+4x-1=2(5x-4)= | | 6x=12-x= | | 5t^2-10t-65=0 | | 5=-2(-1)+x | | 10=5x-x= | | (4x-4)=(5x-22) |